(11) Plane Geometry

1. In the figure (not drawn to scale), \(AE \) is the diameter of the circle, \(F \) is the mid-point of \(CE \) and \(ED \) is tangent to the circle at \(E \). \(CG, BF \) and \(AE \) are parallel lines.
 a) Prove that \(\triangle ACE \) is congruent to \(\triangle EDC \)
 b) Prove that \(\triangle CBF \) is similar to \(\triangle DEC \)
 c) Prove that \(CD \times CE = 4CF \times BF \)
 d) Prove that \(AE^2 = CA^2 + CD^2 + DE^2 \)

 ![Diagram for Plane Geometry 1](image)

2. In the figure, \(BD \) and \(CD \) are tangents to the circle at \(B \) and \(C \) respectively. \(AB \) is parallel to \(CD \) and \(BE \) is perpendicular to \(CD \).
 a) Prove that \(\triangle ABC \) is an isosceles triangle
 b) Prove that \(\triangle DCB \) is similar to \(\triangle CAB \)
 c) Prove that \(CE^2 + EB^2 = AB \times DB \)

 ![Diagram for Plane Geometry 2](image)
3. In the diagram, CD is a tangent to the circle ABC at C. BC is a common chord between both circles and F is the intersection between lines AE and CD.
 a) Prove that AC is parallel to DE.
 b) Prove that $CF^2 = AF \times FB$

4. In the diagram, BD and DF are tangents to the circle and $4ABD = 24DBC$. Prove that $AD = DF$.

5. BCF is an equilateral triangle inscribed in a circle. ABC is a tangent to the circle at point B. Given that $EF = HL$ and $AEGL$ is a straight line, prove that
6. In the diagram, the 2 circles intersect at points D and F. ABC is a tangent to the bigger circle at B and HFB is a tangent to the smaller circle at F. ADF, EDB and EFG are straight lines.

a) Prove that $BF = BG$.

b) Show that ABC is parallel to EFG

c) Show that $\triangle BDA$ is similar to $\triangle EGB$

![Diagram for 6]

7. In the diagram, B is the mid-point of AC and G is the mid-point of AD. CDE and BGF are straight lines. Given that $BH = 2HE$, show that,

a) $\triangle DHE$ is similar to $\triangle GHB$

b) $AH = 5DH$

![Diagram for 7]
8. The diagram shows triangle \(ABC \) where \(AD = DF \), \(AB = 2BE \) and \(BC = 3CD \). Find the value of \(\frac{\text{Area of } \triangle CDE}{\text{Area of } \triangle AEF} \).

\[\frac{\text{Area of } \triangle CDE}{\text{Area of } \triangle AEF} \]

9. In the figure, \(ABCD \) is a square with sides 8 cm and \(AEFG \) is a rectangle. Given that \(AG = 6 \text{ cm} \), find the length of \(GF \).

10. In the diagram, \(AFE \) is a triangle inscribed in a circle. \(ABCD \) is a parallelogram and \(AB \) is a tangent to the circle at point \(A \). Prove that