Coordinate Geometry

1. The diagram shows a trapezium ABCD such that BC is parallel to AD and perpendicular to CD.
 i) Find the coordinates of vertex D
 ii) Point E lies on BC such that the area of triangle ACE is \(\frac{1}{2} \) of the area of triangle ABE. Find the coordinates of E.
 iii) Point F lies on AD produce such that it forms a parallelogram with vertices A, B and C. Find the possible coordinates of F.
 iv) Determine the ratio of the area of triangle ACB to the parallelogram AFBC.

i) Gradient of AD = Gradient of BC = \(\frac{5-(-4)}{-1-2} = -3 \)

Gradient of CD = \(\frac{-1}{-3} = \frac{1}{3} \)

Equation of AD: \(y - 0 = -3(x - 4) \)
\(y = -3x + 12 \) \(- - - (1) \)

Equation of CD: \(y - (-4) = \frac{1}{3}(x - 2) \)
\(y = \frac{1}{3}x - \frac{14}{3} \)
\(3y = x - 14 \) \(- - - (2) \)

Sub (1) into (2):
\(3(-3x + 12) = x - 14 \)
\(-9x + 36 - x + 14 = 0 \)
\(x = 5 \)
\(y = -3 \)

ii) \(\frac{\text{area of } ACE}{\text{area of } ABE} = \frac{1}{2} \)

\(\frac{1}{2} \times EC \times \text{Height} = \frac{1}{2} \)

\(\frac{1}{2} \times EB \times \text{Height} = \frac{1}{2} \)

\(\frac{EC}{EB} = \frac{1}{2} \)

By Ratio Theorem, Coordinates of E = \(\left(\frac{1 \times -1 + 2 \times 2}{2+1}, \frac{1 \times 5 + 2 \times -4}{2+1} \right) = (-1, -1) \)

iii) Case 1: For parallelogram arranged as AFBC
\[\overrightarrow{BC} = \overrightarrow{FA} = \left(\frac{3}{-9} \right) \]
\[\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \left(\frac{4}{0} \right) + \left(\frac{-3}{9} \right) = \left(\frac{1}{9} \right) \]
Coordinates of \(F \) is \((1,9) \)

Case 2: For parallelogram arranged as ABFC
\[\overrightarrow{BC} = \overrightarrow{AF} = \left(\frac{3}{-9} \right) \]
\[\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \left(\frac{4}{0} \right) + \left(\frac{3}{-9} \right) = \left(\frac{7}{-9} \right) \]
Coordinates of \(F \) is \((7,-9) \)
\[\therefore \text{possible coordinates of } F \text{ are } (1,9) \text{and} (7,-9) \]

iv) \[\frac{\text{area of } \triangle ABC}{\text{area of } \triangle AFBC} = \frac{\frac{1}{2} \times BC \times \text{height}}{BC \times \text{height}} = \frac{1}{2} \]
2 Point A has coordinates (2,3) and line \(l_1 \) has equation \(2y = 4x + 5 \).

a) Find the coordinates of the foot of the perpendicular from Point A to line \(l_1 \).

b) Find the shortest distance from Point A to line \(l_1 \).

c) Point B is the reflection of Point A on the line \(l_1 \), find the coordinates of B.

a) \textit{Let the foot of the perpendicular from Point A to line } \(l_1 \) \textit{be Point C}

\text{Gradient of } \(l_1 \) \text{ is } \frac{4}{2} = 2

\text{Gradient of } \perp \text{ line } = -\frac{1}{2}

\text{Equation of } \perp \text{ line: } (y - 3) = -\frac{1}{2}(x - 2)

\text{Equating } l_1 \text{ and } \perp \text{ line: } 2x + \frac{5}{2} = -\frac{1}{2}x + 4

4x + 5 + x - 8 = 0

5x = 3

x = 0.6

y = 3.7

\text{Coordinates of } C \text{ is } (0.6, 3.7)

b) \text{ Length of } AC = \sqrt{(2 - 0.6)^2 + (3 - 3.7)^2}

= 1.57 \text{ units (3 s.f.)}

c) \(C \) \text{ is the mid-point of } AB

\frac{2 + x}{2} = 0.6

\frac{x}{2} = -0.8

\frac{3 + y}{2} = 3.7

y = 4.4

\text{Coordinates of } B \text{ is } (-0.8, 4.4)
3 The equation of the perpendicular bisector of the line segment which joins $A(2,3)$ and $B(h,k)$ is $y = x - 1$. Find the value of h and of k.

Gradient of perpendicular bisector = 1

Gradient of $AB = -1 = \frac{(k-3)}{(h-2)}$

\[k - 3 = -h + 2 \]
\[k = -h + 5 \quad \text{(1)} \]

Midpoint of $AB = \left(\frac{2+h, 3+k}{2} \right)$

\[\frac{3+k}{2} = \frac{2+h}{2} - 1 \]
\[3 + k = 2 + h - 2 \]
\[k = h - 3 \quad \text{(2)} \]

Sub (1) to (2): $-h + 5 = h - 3$

\[2h = 8 \]
\[h = 4 \]
\[k = 1 \]

4 The diagram shows 3 vertices of a parallelogram. Given $A(1,2)$, $B(3,0)$ and O, find the possible positions of the fourth vertex.

Ans: $(4,2), (-2,2), (2,-2)$
5 The diagram above (not drawn to scale) shows kite \(ABCD\) with \(DC\) parallel to the \(x\)-axis. The area of triangle \(ADC\) is 3 times that of triangle \(ABC\). Given that \(C(7, -2)\) and the equation of the diagonal \(BD\) is \(2y = x\), find

i) Coordinates of \(D\)

Sub \(y = -2\) into \(2y = x\):
\[x = -4\]
Coordinates of \(D\) is \((-2, -4)\)

ii) Gradient of \(DB\) = \(\frac{1}{2}\)

Gradient of \(AC\) = \(-2\)

Equation of \(AC\): \((y - (-2)) = -2(x - 7)\)
\[y = -2x + 12\]
Equate \(AC\) and \(BD\): \(-2x + 12 = \frac{1}{2}x\)
24 = 5x
\[x = 4.8\]
\[y = 2.4\]
Coordinates of \(E\) is \((4.8, 2.4)\)

iii) \(E\) is the midpoint of \(AC\).
\[
\left(\frac{x+7}{2}, \frac{y-2}{2}\right) = (4.8, 2.4)
\]
\[x = 2.6\]
\[y = 6.8\]
Coordinates of \(A\) is \((2.6, 6.8)\)

iv) Given that \[\frac{\text{Area } ADC}{\text{Area } ABC} = \frac{3}{1}\]
\[\frac{DE}{EB} = \frac{3}{1}\]

Using Ratio Theorem:
\[\left(\frac{1\times(-2)+3\times(x)}{3+1}, \frac{1\times(-4)+3\times(y)}{3+1}\right) = (4.8, 2.4)\]
\[x = 7.07\]
\[y = 4.53\]
Coordinates of \(B\) is \((7.07, 4.53)\)
6 Three points A, B and C lies on a straight line such that \(AB = 2BC \). The coordinates of point B is
\((4, -2)\) and \(\tan \theta = \frac{2}{3} \). Find the

i) equation of line \(AC \)

ii) coordinates of A and C

iii) coordinates of the point on line \(AC \) that is closest to \(O \).

(Leave your answer to the nearest 3 s.f.)

i) Since \(\tan \theta = \frac{2}{3} \),
Gradient of \(AC \) = \(\frac{2}{3} \)

Equation of \(AC \): \(y - (-2) = \frac{2}{3} (x - 4) \)
\[y = \frac{2}{3} x - \frac{8}{3} - 2 \]
\[3y = 2x - 14 \]
\[-(1)\]

ii) C is on the x-axis, \(y = 0, \)
\[0 = 2x - 14 \]
\[x = 7 \]
\[\therefore C(7, 0) \]

\(AB = 2BC \)
\[\sqrt{(x - 4)^2 + (y + 2)^2} = 2\sqrt{(4 - 7)^2 + (-2 - 0)^2} \]
\[(x - 4)^2 + (y + 2)^2 = 4(9 + 4) \]
\[(x - 4)^2 + (y + 2)^2 = 52 \]
\[-(2)\]

Sub (1) into (2):
\[(x - 4)^2 + \left(\frac{2x - 14}{3} + 2 \right)^2 = 52 \]
\[(x - 4)^2 + \left(\frac{2}{3} x - \frac{8}{3} \right)^2 = 52 \]
\[x^2 + 16 - 8x + \frac{4}{9} x^2 + \frac{64}{9} - \frac{32}{9} x - 52 = 0 \]
\[13x^2 - 104x - 260 = 0 \]
\[(x + 2)(x - 10) = 0 \]
\[x = -2 \] or \(x = 10 \) (Ref)
\[y = -6 \]
\[\therefore A(-2, -6) \]

iii) Let the point on AC that is closest to \(O \) be \(D \)

Gradient of \(OD \) = \(\frac{-1}{2} = -\frac{3}{2} \)

Equation of \(OD \): \(y = -\frac{3}{2} x \)
\[-(3)\]

Sub (1) with (3):
\[3 \left(-\frac{3}{2} x \right) = 2x - 14 \]
\[-9x = 4x - 28 \]
\[x = \frac{28}{13} = 2.15 \text{ (3 s.f.)} \]
\[y = \frac{-42}{13} = -3.23 \text{ (3 s.f.)} \]

Coordinates of point is \((2.15, -3.23)\)
The diagram shows a trapezium OABC. The equation of \(OA \) is \(y = x \) and the equation of \(OC \) is \(2y + x = 0 \). Line \(OA \) is parallel to \(CB \) and perpendicular to \(AB \). Point \(B \) is on the \(x \)-axis. The length of \(OA \) is \(4\sqrt{2} \) units.

i) Find the coordinates of \(A \)
ii) Find the coordinates of \(B \)
iii) Find the coordinates of \(C \).
iv) Hence, calculate the area of trapezium \(OABC \).

i) Let the coordinates of \(A \) be \((x, x)\)

\[OA = \sqrt{(x - 0)^2 + (x - 0)^2} \]
\[4\sqrt{2} = \sqrt{2x^2} \]
\[32 = 2x^2 \]
\[x = 4 \quad \text{or} \quad x = -4 \ (R e f) \]

Coordinate of \(A \) is \((4, 4)\)

ii) Gradient of \(OA = 1 \)
Gradient of \(AB = -1 \)
Equation of \(AB \): \((y - 4) = -1(x - 4)\)
y = \(-x + 8\)
When \(y = 0 \): 0 = \(-x + 8\)
x = 8
Coordinates of \(B \) is \((8, 0)\)

iii) Gradient of \(CB = \) Gradient of \(OA = 1 \)
Equation of \(CB \): \((y - 0) = 1(x - 8)\)
y = \(x - 8\)
Equate equation \(OC \) with equation \(CB \):
\[-\frac{x}{2} = x - 8\]
\[-x = 2x - 16\]
x = \(\frac{16}{3} = 5\frac{1}{3}\)
y = \(-\frac{8}{3} = -2\frac{2}{3}\)
Coordinate of \(C \) is \((5\frac{1}{3}, -2\frac{2}{3})\)

iv) Area \(OABC = \frac{1}{2} \left|\begin{array}{cccc}
4 & 0 & 5\frac{1}{3} & 8 & 4 \\
4 & 0 & -2\frac{2}{3} & 0 & 4 \\
\end{array}\right| \\
= \frac{1}{2} \left(4 \times 0 + 0 \times -2\frac{2}{3} + 5\frac{1}{3} \times 0 + 8 \times 4 \right) - \left(4 \times 0 + 0 \times 5\frac{1}{3} - 2\frac{2}{3} \times 8 + 0 \times 4 \right) \right) \\
= \frac{1}{2} \left(32 + 6\frac{4}{3} \right) \\
= 26\frac{2}{3} \ units^2
8. ABCD is a trapezium with AB parallel to BC. The equation of DC is $6y = 11x - 41$. Given that midpoint of AD lies on the y-axis and the midpoint of BD lies on the x-axis, find

i) the coordinates of D
ii) the coordinates of C
iii) area of ABCD
iv) the perpendicular distance between AD and BC (leaving your answer to 3 s.f.)

i) Let the coordinates of D be (x, y)

Since the midpoint of AD lies on y-axis,

\[
\frac{x - 1}{2} = 0
\]

\[x = 1\]

Since the midpoint of BD lies on the x-axis,

\[
\frac{y + 5}{2} = 0
\]

\[y = -5\]

The coordinates of D is $(1, -5)$

ii) Gradient of $AD = \frac{4 - (-5)}{-1 - 1} = -\frac{9}{2}$

Gradient of $BC = \text{Gradient of } AD = -\frac{9}{2}$

Equation of BC: $(y - 5) = -\frac{9}{2}(x - 3)$

$y = -\frac{9}{2}x + 18.5$

Equate BC and DC:

\[-\frac{9}{2}x + 18.5 = \frac{11}{6}x - \frac{41}{6}\]

\[x = 4\]

\[y = 0.5\]

The coordinates of C is $(4, 0.5)$

iii) Area of ABCD = \[
\frac{1}{2} \left| -1 \quad 4 \quad -5 \quad 0.5 \quad 5 \quad 4 \right| \]

= \[
\frac{1}{2} \left((-1 \times -5 + 1 \times 0.5 + 4 \times 5 + 3 \times 4) - (4 \times 1 - 5 \times 4 + 0.5 \times 3 + 5 \times 1) \right) \]

= \[
\frac{1}{2} \times 57 \]

= 28.5 units2

iv) Length of AD = \[
\sqrt{(4 - (-5))^2 + ((-1) - 1)^2} = \sqrt{85}
\]

Length of BC = \[
\sqrt{(5 - 0.5)^2 + (4 - 3)^2} = \sqrt{21.25}
\]

Area of ABCD = \[
\frac{AD + BC}{2} \times \text{Height}
\]

\[28.5 = \frac{\sqrt{85} + \sqrt{21.25}}{2} \times \text{Height} \]

Height = 4.12 units
In the diagram, ABCD is a rectangle. The coordinates of A are (-1,2) and the equation of BC is \(3y + x = 25\). Given that the area of ABCD is 80 units\(^2\), find the coordinates of B, C and D.

Equation of BC: \(y = -\frac{x}{3} + \frac{25}{3}\)
Gradient of BC = \(-\frac{1}{3}\)
Gradient of AB = 3
Equation of AB: \((y - 2) = 3(x + 1)\)
\(y = 3x + 5\)
Equate equations of AB and BC:
\(3x + 5 = -\frac{x}{3} + \frac{25}{3}\)
\(x = 1\)
\(y = 8\)
Coordinates of B are (1,8)

Length of AB = \(\sqrt{(8 - 2)^2 + (1 - (-1))^2} = \sqrt{40}\)
Length of BC = \(\frac{80}{\sqrt{40}} = 4\sqrt{10}\)
Let the coordinates of C be \((x, y)\)
Length of BC = \(\sqrt{(8 - y)^2 + (1 - x)^2} = 4\sqrt{10}\)
\((8 - y)^2 + (1 - x)^2 = 160\) --- (2)
Substitute Equation (1) with (2):
\(\left(8 + \frac{x}{3} - \frac{25}{3}\right)^2 + (1 - x)^2 = 160\)
Solve for \(x\):
\(x = 13\) or \(x = -11\) (Rej)
\(y = 4\)
Coordinates of C are (13,4)
Equation of CD: \((y - 4) = 3(x - 13)\)
\(y = 3x - 35\)
Equation of AD: \((y - 2) = -\frac{1}{3}(x + 1)\)
\(y = -\frac{1}{3}x + \frac{5}{3}\)
Equate Equations of CD with AD:
\(3x - 35 = -\frac{1}{3}x + \frac{5}{3}\)
\(x = 11\)
\(y = -3\)
Coordinates of D are (11, -3)
The diagram shows a rhombus ABCD. Two of the points are A(1,-1) and C(7,5). Point D lies on the y-axis.

i) Find the coordinates of D

ii) Find the coordinates of B

iii) Find the area of rhombus ABCD

iv) Calculate the perpendicular distance from C to AB.

i) Mid point of AC = \(\left(\frac{7+1}{2}, \frac{5-1}{2} \right) = (4, 2) \)

Gradient of AC = \(\frac{5 - (-1)}{7 - 1} = \frac{1}{1} = 1 \)

Gradient of perpendicular bisector of AC = \(-\frac{1}{1} = -1 \)

Equation of DB: \((y - 2) = -1(x - 4)\)

\(y = -x + 6 \)

When \(x = 0 \), \(y = 0 + 6 = 6 \)

Coordinates of D are \((0, 6)\)

ii) Let the coordinates of B be \((x, y)\),

Mid point of DB = Mid point of AC

\(\left(\frac{0+x}{2}, \frac{6+y}{2} \right) = (4, 2) \)

\(\frac{0+x}{2} = 4 \) and \(\frac{6+y}{2} = 2 \)

\(x = 8 \) and \(y = -2 \)

Coordinates of B are \((8, -2)\)

iii) Area of ABCD = \(\frac{1}{2} \left| \begin{array}{cc} 1 & 8 & 7 & 0 & 1 \\ -1 & -2 & 5 & 6 & -1 \end{array} \right| \)

= \(\frac{1}{2} \left((1 \times -2 + 8 \times 5 + 7 \times 6 + 0 \times -1) - (-1 \times 8 - 2 \times 7 + 5 \times 0 + 6 \times 1) \right) \)

= \(\frac{1}{2} \times 89 \)

= 44.5 units\(^2\)

iv) Length of AB = \(\sqrt{(-2 - (-1))^2 + (8 - 1)^2} = \sqrt{50} \)

Perpendicular distance = \(\frac{44.5}{\sqrt{50}} = 6.29 \) units (3 s. f.)