(2) Surds and Indices

- 1. Find the value of k and m if $\frac{3^{3n+2}+3^{3n-1}}{2\times 3^{nk}}=m$. m is a constant and n>0.
- 2. Without using a calculator, solve the equation $\left(\frac{3^{y+1}}{24}\right)^{\frac{1}{x}} = \sqrt{108}$.
- 3. Find the values of a and b if $(2x^3)^a \left(\frac{1}{4x}\right)^{2-a} = \frac{ba^2}{x^{-2}}$
- 4. Find the exact value of x is $32^x = \sqrt{4\sqrt{8\sqrt{32}}}$
- 5. Simplify $\frac{5}{\sqrt{1}+\sqrt{2}} + \frac{5}{\sqrt{2}+\sqrt{3}} + \dots + \frac{5}{\sqrt{14}+\sqrt{15}} + \frac{5}{\sqrt{15}+\sqrt{16}}$
- 6. Solve $\sqrt{y-4} + \sqrt{3y+1} = 5$
- 7. Given that $5(3^{3x-2}) + 4(2^{2x+2}) = 4^x$, express $\left(\frac{4}{27}\right)^x$ in the form $\frac{a}{b}$ where a and b are integers.
- 8. Without using a calculator, find the values of a, b and c for which the solution of the equation $x\sqrt{20} = \sqrt{24} + x\sqrt{6}$ is $\frac{a+b\sqrt{c}}{7}$.
- 9. Show that $3^{n+3} + 3^n 3^{n+2}$ is exactly divisible by 19 for all positive integer values of n.
- 10. Solve $2(3^x) + 5\sqrt{3^x} = 3$
- 11. a) Find the value of x given that $\sqrt{(x+8)\sqrt{(x+8)}} = 2^{\frac{7}{2}}$
 - b) Given that $x = 3 + 2\sqrt{2}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$.