(1) Simultaneous, Quadrilaterals and Inequalities

1. Find the value(s) of \(k \) for the following simultaneous equations, given that the equations have no solution.
 \[
 (k + 1)y = (2k - 1)x + 5 \quad \text{---(1)}
 \]
 \[
 4y = (k + 2)x + 10 \quad \text{---(2)}
 \]

2. The equation \(2x^2 + 8x = 1 \) has roots \(\alpha \) and \(\beta \).
 a) State the value of \(\alpha + \beta \) and \(\alpha\beta \)
 b) Find the value of \(\alpha^2 - \beta^2 \), leaving your answer in surd form.
 c) Find the quadratic equation whose roots are \(\alpha^4 - \beta^4 \)

3. It is given that \(\alpha \) and \(\beta \) are the roots of the equation \(y = x^2 - x - 1 \), where \(\beta > \alpha \) and that \(\alpha + \frac{1}{\alpha} \) and \(\beta + \frac{1}{\beta} \) are the roots of another quadratic equation with integer coefficients. Without solving the values of \(\alpha \) and \(\beta \), find the exact value of \(\alpha + \frac{1}{\alpha} \)

4. a) If one root of the equation \(4x^2 - 22x + k = 0 \) is ten times the other, find the value of \(k \).
 b) Show that \(2 - x^2 + 3x \) can never be greater than 5.

5. Show that the roots of the equation \(x^2 + (2 - k)x = \frac{3}{2}k \) are real for all real values of \(k \).

6. The roots of the equation \(x^2 - 4x + k \) differs by \(2k \). Show that \(s^2 = 4 - k \). Given also that the roots are positive integers and that \(k \) is a positive integer, find the possible values of \(s \).

7. Given that \(\alpha \) and \(\beta \) are the roots of the equation \(x^2 = x - 5 \), prove that
 a) \(\frac{1 - \alpha}{5} = \frac{1}{\alpha} \)
 b) \(\alpha^3 + 4\alpha + 5 = 0 \)

8. a) Find the range of values of \(x \) for which \(2x^2 + x - 6 \) lies between \(-3\) and 4.
 b) Show that if the roots of the equation \(2x^2 + 3x - 2 + m(x - 1)^2 = 0 \) are real, then \(m \) cannot be greater than \(\frac{25}{12} \).

9. Find the range of values of \(k \) for which the graph of \(y = kx^2 - 3x + kx \) lies entirely above the line \(y = 4 \).

10. i) Show that the expression \(x^2 - x + \frac{7}{2} \) is always positive for all real values of \(x \).
 ii) Hence, find the values of \(k \) which satisfy the inequality \(\frac{-x^2 + kx + 2}{-(x^2 - x + 3.5)} < 2 \) for all real values of \(x \).

11. The roots of the equation \(2x^2 - 8x + 50 = 0 \) are \(\alpha^2 \) and \(\beta^2 \). Find
 i) the value of \(\alpha^2 + \beta^2 \) and \(\alpha^2\beta^2 \).
 ii) two different quadratic equations whose roots are \(\alpha \) and \(\beta \)