Linear Law

1. The diagram shows part of a straight line obtained when plotting values of \(\ln(y + 2) \) against \(\ln(x + 1) \). Express \(y \) in terms of \(x \).

Gradient = \(\frac{5-3}{6-2} = \frac{1}{2} \)
Equation of line : \(Y = \frac{1}{2} X + c \)
Sub \((2,3)\) into equation:
\[3 = \frac{1}{2}(2) + c \]
\[c = 2 \]
Equation of line : \(Y = \frac{1}{2} X + 2 \)
\(\ln(y + 2) = \frac{1}{2} \ln(x + 1) + 2 \)
\(\ln(y + 2) = \ln(x + 1)^{\frac{1}{2}} + \ln e^2 \)
\(\ln(y + 2) - \ln(x + 1)^{\frac{1}{2}} = \ln e^2 \)
\(\frac{y + 2}{\sqrt{x + 1}} = e^2 \)
\(y = e^2 \sqrt{x + 1} - 2 \)

2. In each of the following, \(a \) and \(b \) are unknown constants. Express each of them into the form \(Y = mX + c \), where \(X \) and \(Y \) are functions of \(x \) and/or \(y \), and \(m \) and \(c \) are constants.
\(y^b = 10^{x+a} \)

Ans: a) \(\lg y = \frac{1}{b} x + \frac{a}{b} \)
b) \(\lg y = (\lg a)x + \lg(b + 2) \)
c) \(\frac{1}{y^2} = \frac{1}{a^2} x - \frac{b}{a^2} \)
3. Alvin and Gina both used linear law to express the same equation into forms suitable for drawing straight line graphs. As they expressed the equation differently, 2 different graphs were obtained (as shown below). Determine the original equation relating x and y.

Solution:

$y^2 = m(xy) + c$

Substitute Coordinates into Equation (1):

$(6) = m(1) + c$

Divide equation (1) by y^2:

$1 = m \left(\frac{x}{y} \right) + c \left(\frac{1}{y^2} \right)$

Substitute Coordinates into Equation (3):

$1 = m(2) + c(-3.5)$

Simultaneously solve (2) and (4):

$m = 4$
$c = 2$

\therefore Equation is $y^2 = 4(xy) + 2$